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Abstract

Video action recognition, a critical problem in video understanding, has been gaining
increasing attention. To identify actions induced by complex object-object interactions,
we need to consider not only spatial relations among objects in a single frame, but also
temporal relations among different or the same objects across multiple frames. However,
existing approaches that model video representations and non-local features are either
incapable of explicitly modeling relations at the object-object level or unable to han-
dle streaming videos. In this paper, we propose a novel dynamic hidden graph module
to model complex object-object interactions in videos, of which two instantiations are
considered: a visual graph that captures appearance/motion changes among objects and
a location graph that captures relative spatiotemporal position changes among objects.
Additionally, the proposed graph module allows us to process streaming videos, setting
it apart from existing methods. Experimental results on benchmark datasets, Something-
Something and ActivityNet, show the competitive performance of our method.

1 Introduction
Video action recognition has shown remarkable progress through the use of deep learning [4,
12, 23, 25, 26] and newly-released datasets, e.g., Kinetics [13], Something-Something [9,
19], and ActivityNet [7] to name a few. Despite the importance of complex object-object
interactions in defining actions (see Fig. 1 for an example), they are often overlooked. To
recognize such interactions, we postulate that two general relations should be taken into con-
sideration: 1) the interactions among different objects in a single frame, and 2) the transition
of such interactions among different objects and the same object across multiple frames. We
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Figure 1: The action “pulling two ends of a hair band so that it gets stretched” contains
interactions between two hands and a hair band. The visual graph captures the relation
between visually similar objects (blue arrows) while the location graph captures relation
between overlapped or close objects (white arrows).

denote the former relation as spatial relation, and the latter one as temporal relation. Both
are crucial to recognize actions involving multiple objects. An effective action recognition
model should be able to capture both relations precisely and simultaneously.

Despite many recent works [2, 11, 20, 27, 30] that explore modeling interactions between
objects, few of them build models to capture the spatiotemporal interactions simultaneously.
To model interactions among objects in both the spatial and temporal domain, we propose
a dynamic graph module to capture object interactions from the beginning of a video in a
progressive way to recognize actions. Similar to LSTM, we maintain a hidden state across
time steps, in the form of a complete directed graph with self-connections, which we named
hidden graph. When a new frame arrives, regions of interests (RoIs) [8, 21] in this frame
are connected with nodes in the hidden graph by edges. Then, messages from RoIs in the new
arriving frame will be passed to the hidden graph explicitly. After the information passing,
the hidden graph further performs a self-update. A global aggregation function is applied to
summarize the hidden graph for action recognition at this time step. When the next frame
arrives, we repeat the above steps. Through this dynamic hidden graph structure, we capture
both the spatial relation in each arrival frame and the temporal relation across frames.

To fully exploit diverse relations among different objects, we propose two instantiations
of our graph module: visual graph and location graph. The visual graph is built based on
the visual similarity of RoIs to link the same or similar objects and model their relations.
The location graph is built on locations/coordinates of RoIs. Spatially overlapped or close
objects are connected in the location graph. The streaming nature of our proposed methods
enables the recognition of actions with only a few starting frames. As more frames come
in, the accuracy of our model increases steadily. Our graph module is generic and can be
combined with any 2D or 3D ConvNet in a plug-and-play fashion.

To demonstrate the effectiveness of our dynamic graph module in improving recog-
nition performance of the backbone network, we conduct experiments on three datasets:
Something-Something v1 [9], v2 [19], and ActivityNet [7]. All datasets consist of videos
involving human-object interactions. Videos in Something-Something are short, trimmed,
and single-labeled, while videos in ActivityNet are long, untrimmed and multi-labeled. Our
experimental results support that our graph module can both process streaming videos and
help improve the overall performance of existing action recognition pipelines.
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2 Dynamic Graph Modules
Definition and Notations. We denote a video as V = { f1, f2, ..., fT} where ft represents the
feature map of the t-th frame extracted by a 2D ConvNet or the t-th feature map extracted by
a 3D ConvNet. For each feature map, we keep its top-N region proposals generated by a Re-
gion Proposal Network (RPN) [21] and denote the set of proposals as BBBt = {bbbt

1,bbb
t
2, . . . ,bbb

t
N},

where the superscript denotes the frame index and the subscript indexes proposals in the
current frame. We represent proposals by their coordinates and extract the associated region
feature bbbt

n ∈R1024 [21]. Analogous to the hidden state in LSTM, we maintain a hidden graph
when chronologically processing the video, where we use proposals at t = 1 to initialize the
hidden graph. We define the hidden graph as G = (X ,E), where X = {xxx1,xxx2, . . . ,xxxM} de-
notes the set of nodes and E = {E(xxxm,xxxk)} denotes the set of weighted edges. Here, we
allow self-connections within the hidden graph. Each node in the hidden graph has a fea-
ture vector and a pair of (virtual) coordinates (top-left, bottom-right). For simplicity, we
also use xxxmmm ∈ R1024 to denote the feature of the m-th node in the hidden graph and use
(mx,1,my,1,mx,2,my,2) to denote the coordinates of this node.
Graph Module Overview. In Fig. 2(a), we provide an unrolled version of our dynamic
graph module where we omit the backbone network and RPN for simplicity. During the
initialization, we use max-pooling to summarize all proposals in the first feature map as an
initial context vector to warm start our graph module. For each of the following feature
maps, proposals are fed into the graph module to update the structure of the hidden graph
via an explicit information passing process. We design two types of hidden graphs, visual
graph and location graph, based on two different dynamic updating strategies which will
be elaborated in Sec. 2.1 and Sec. 2.2. At each time step, the hidden graph contains both
visual features and interaction information of different regions accumulated in all previous
time steps. We apply a global aggregation function to select a group of the most relevant and
discriminative regions to recognize actions. More details are provided in Sec. 2.3.

2.1 The Visual Graph
Our visual graph aims to link objects with similar appearances/motions and is built based on
proposal features. The graph building process is illustrated in Fig. 2(b). We use the features
of top-N proposals at t = 1 time step to initialize the features of all nodes in the hidden graph.
At time step t > 1, we measure the pairwise visual similarity between the N proposals in the
t-th feature map and the M nodes in the hidden graph. The visual similarity is defined as:

FFFvvv(bbbt
n,xxxm) = h(bbbt

n)
>g(xxxm) , (1)

where n = 1,2, . . . ,N, m = 1,2, . . . ,M, and both h(·) and g(·) are linear transformations. We
apply softmax(·) to normalize the weights of edges connecting the m-th node in the hidden
graph and all proposals in the t-th feature map, so that we have:

FFF ′vvv(bbb
t
n,xxxm) =

expFFFvvv(bbbt
n,xxxm)

∑
N
n=1 expFFFvvv(bbbt

n,xxxm)
. (2)

Each node in the hidden graph incorporates information from all N proposals of the t-th
feature map gated by FFF ′vvv(bbb

t
n,xxxm). Therefore, the total amount of inflow information gathered

from the t-th feature map to node m is:

x̂xxm =
N

∑
n=1

FFF ′vvv(bbb
t
n,xxxm)h(bbbt

n) . (3)
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(a) The unrolled version of our graph network (back-
bone ConvNet and RPN are omitted).
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(b) The graph building process at each time step t− 1
and t.

Figure 2: (a). A “hidden graph” is built dynamically in the temporal domain. At each
time step, the hidden graph incorporates information from proposals and generates a context
vector (denoted as “ctx” in the figure, more details in Sec. 2.3) for action recognition. (b).
At t−1 time step, the hidden graph (top row) first incorporates messages from all proposals
in the current frame (bottom row) as indicated by yellow arrows; then the hidden graph
updates its edges as indicated by black arrows. The width of arrows represents the amount
of information that flows along the edges. This process iterates in the following time steps.

An intuitive explanation is that each node in the hidden graph looks for the most visually
similar proposals and establishes a connection based on the similarity. Subsequently, the
node updates its state by absorbing the incoming information:

σv = sigmoid(Wmxxxm +Ŵmx̂xxm) , xxxm := σvxxxm +(1−σv)x̂xxm , (4)

where σv denotes the gate function controlled by the node state and incoming information,
Wm ∈ R1024×1024 and Ŵm ∈ R1024×1024 are learnable weights. If a proposal and a node are
more visually similar in the projected space, more information will flow from this proposal
to the node.

After incorporating the information from all N proposals of the t-th feature for all nodes,
the hidden graph will have an internal update. Notice that the hidden graph is a complete
directed graph initially including self-connections. The edge weights are computed as:

EEEvvv(xxxk,xxxm) = φ(xxxk)
>

φ(xxxm) , (5)

where φ(·) is a linear layer with learnable parameters. Eq. 5 is similar to Eq. 1, except that
both xxxm and xxxk are features of nodes in the hidden graph. After the edges of the hidden graph
are updated, we propagate information for each node inside the hidden graph using a strategy
similar to Eqs. 2, 3, and 4. Note that for Eqs. 2 and 3, we replace bbbt

i with xxxk, and replace h(·)
with φ(·). Due to the different normalizations, EEE ′vvv(xxxm,xxxk) differs from EEE ′vvv(xxxk,xxxm), hence a
directed graph. Moving to the next time step t + 1, we repeat the above process. Taking
advantage of the iterative processing, our model is capable of processing streaming videos.

2.2 The Location Graph
To utilize the displacement of objects to capture spatial relations among proposals, we pro-
pose a location graph built upon the coordinates of proposals to link objects that are over-
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lapped or at close positions.
At time step t, the location-based relation between the n-th proposal in the t-th feature

map and the m-th node in the hidden graph is defined as:

FFF lll(bbb
t
n,xxxm) = σσσ

t
n,m , (6)

where σσσ t
n,m represents the value of Intersection-over-Union (IoU) between the n-th box in

the t-th feature map and the m-th node in the hidden graph. Similar to [28], we adopt L-1
norm to normalize weights connecting the m-th node in the hidden graph and all proposals
in the t-th feature map:

FFF ′lll(bbb
t
n,xxxm) =

FFF lll(bbb
t
n,xxxm)

∑
N
n=1 FFF lll(bbb

t
n,xxxm)

. (7)

Analogous to the information passing process in the visual graph, each node in the hidden
graph receives messages from all connected proposals from the t-th feature map:

x̂xxm =
N

∑
n=1

FFF ′lll(bbb
t
n,xxxm)p(bbbt

n) , xxxm := ReLU(xxxm + x̂xxm) , (8)

where p(·) is a linear transformation. After the information is passed from all proposals
to the hidden graph, we update edges in the hidden graph dynamically. We compute IoU
between each pair of nodes inside the hidden graph using Eq. 9 which is similar to Eq. 6:

EEE lll(xxxk,xxxm) = σσσ k,m , (9)

where xxxk and xxxm are features of nodes in the hidden graph. After the graph is built, messages
can be propagated by applying Eqs. 7, 8, and 9 inside the hidden graph, where we replace bbbt

i
with xxxk, and replace p(·) with another linear transformation ψ(·).
Coordinates updating. One problem in building the location graph is how to decide the
coordinates (“virtual” bounding box) of each node in the hidden graph. We propose a coor-
dinate shifting strategy to approximate the coordinates of each node in the hidden graph.

We use the coordinates of the top-N proposals at time step t = 1 to initialize the co-
ordinates of all nodes in the hidden graph. At time step t > 1, suppose the top-left and
bottom-right coordinates of the m-th node in hidden graph are (mt−1

x,1 ,mt−1
y,1 ,mt−1

x,2 ,mt−1
y,2 ), and

the coordinates of the n-th proposal in the t-th feature map are (nt
x,1,n

t
y,1,n

t
x,2,n

t
y,2). The nor-

malized weight (IoU) between the m-th node in the hidden graph and the n-th proposal in
the t-th feature map is FFF ′lll(bbb

t
n,xxxm). The larger the weight, the more information will flow

from the n-th proposal to the m-th node and the coordinates of the m-th node will shift more
towards the position of the n-th proposal. After information passing, the target position of
the m-th node is the center of the current position and the weighted average positions of all
proposals in the t-th feature map connected to the m-th node. Formally, the coordinate of
mt

x,1 is computed as:

mt
x,1 =

1
2
(mt−1

x,1 +
N

∑
n=1

FFF ′lll(bbb
t
n,xxxm)nt

x,1) , (10)

Similarly for mt
y,1, mt

x,2 and mt
y,2 which can be found in the Appendix. Hence, coordinates

attached to nodes in the hidden graph will update dynamically according to input proposals
at each time step.
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2.3 Attention on Graph

At each time step, the hidden graph contains accumulated information from all preceding
time steps. The recognition decision is generated based on the state of the hidden graph. We
need an aggregation function ρ to gather information from all nodes in the hidden graph. At
the same time, such a function should be invariant to permutations of all nodes [3].

Attention mechanism was first proposed in [1] and it takes a weighted average of all
candidates based on a query [14]. We add a virtual node to summarize the hidden graph at
each time step (see the “ATT” block in Fig. 2(a)). The feature of this virtual node serves
two purposes: one is to recognize actions at the current time step, and another is to act as
a query (or context) to aggregate information from the hidden graph at the next time step.
Specifically, the feature of virtual node at time step t is denoted as qqqt , the feature of m-th
node in hidden graph at time step t +1 is denoted as xxxt+1

m , then the feature of virtual node at
time step t +1, denoted as qqqt+1, is computed as:

et+1
m = tanh(Wgqqqt +Whxxxt+1

m ) , α
t+1
m =

expWoet+1
m

∑
M
m=1 expWoet+1

m
, qqqt+1 =

M

∑
m=1

α
t+1
m xxxt+1

m , (11)

where Wc, Wh and Wo are learnable weights. Note that the initial feature of the virtual node is
the max-pooling of all proposals in the first feature map. Once the feature of the virtual node
is generated, we can forward the feature into a multi-layer perceptron to recognition actions.

3 Full Model for Action Recognition

In this section, we introduce two versions of our full models: streaming version and static
version. The streaming version can process streaming videos while the static version incor-
porates the global video feature and achieves better overall performance.

Streaming Version. Given a video clip (around 5 seconds), our model first randomly sam-
ples 32 frames. The sampled frames are fed into a backbone network. In our case, we apply
a 3D ConvNet [4]. The output of the backbone is a sequence of 3D feature maps with the
shape of T ×C×H×W . We apply a region proposal network (RPN) [21] to extract propos-
als for each sampled frame. With the proposed bounding boxes, we conduct RoIAlign [10]
on the sequence of feature maps. We build our graph module dynamically upon a sequence
of RoI proposals from the feature maps. We maintain a “hidden graph” which evolves along
the temporal dimension and generates a recognition result at each time step.

Static Version. To achieve better recognition accuracy, it is beneficial to utilize all infor-
mation contained in a video. We provide a static version of our model in which we sample
frames from an entire video and input all sampled frames into both the backbone 3D ConvNet
and a RPN. We average pool the features produced by the 3D ConvNet from T ×C×H×W
to C× 1, denoted as fff . Different from the streaming version where we only use the graph
module feature qqqt at each time step, here we fuse both graph module features and 3D Con-
vNet features by concatenating them to recognize actions. More details about the fusion
layers are in the Appendix.

Citation
Citation
{Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, Malinowski, Tacchetti, Raposo, Santoro, Faulkner, etprotect unhbox voidb@x penalty @M  {}al.} 2018

Citation
Citation
{Bahdanau, Cho, and Bengio} 2014

Citation
Citation
{Kim, Denton, Hoang, and Rush} 2017

Citation
Citation
{Carreira and Zisserman} 2017

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{He, Gkioxari, Doll{á}r, and Girshick} 2017



HUANG, ZHOU, ZHANG, CORSO, XU: ACTION RECOGNITION & DYNAMIC GRAPH 7

4 Experiment

4.1 Datasets, Metrics, and Implementation Details
Datasets. We evaluate our dynamic graph module on datasets: Something-Something v1
and v2 [9, 19] and ActivityNet [7]. Something-Something v1 [9] contains more than 100K
short videos and v2 [19] contains around 220K videos. The average video duration is about
3 to 6 seconds. There are 174 total action classes and each video corresponds to exactly
one action. For both v1 and v2 datasets, we follow the official split to train and test our
model. ActivityNet contains 10K videos for training, enclosing 15K activity instances from
200 activity classes. The validation set contains 5K videos and 7K activity instances. We
also follow the official split to train and test our model.
Metrics. Since all videos in Something-Something dataset are single-labeled, we adopt
recognition accuracy (top-k) as our evaluation metrics. In ActivityNet dataset, mean average
precision (mAP) is also used for prediction evaluation as some videos have multiple labels.
Compared methods. To verify that our dynamic graph module is capable of modeling
interactions between objects, we design a baseline LSTM model where we feed in the mean-
pooled top-N region features at each time step. We compare our streaming model with this
baseline, along with a state-of-the-art method [33]. We also compare our full static model
with competitive existing works [16, 17, 22, 28, 32, 33].
Region Proposal and Feature. For each input frame, we propose RoI proposals using RPN
with ResNet-50 pre-trained on Microsoft COCO. We project proposal coordinates from the
input frames back to the feature maps generated by the penultimate convolutional block of
3D backbone. Since 32 input frames are reduced to 8 feature maps in the temporal domain,
we select 8 input frames (i.e., 1-th, 5-th, 9-th, ...) to match the 8 feature maps. We apply
RoIAlign [10] with the same configuration in [28] to extract features for each proposal.
Training. For the backbone network, we follow the frame sampling and training strategy
in [28]. Then for our full model, we fix the backbone 3D ConvNet and only train other parts,
e.g., our graph module, fusion layers and classification layer. We adopt the same learning
strategy as the fine-tuning of the backbone. More details are in the Appendix.
Inference. For Something-Something dataset, we uniformly sample 32 frames from the
entire video and rescale them with the shorter side to 256. Then we center crop each frame
to 224× 224. For ActivityNet dataset, we segment each video into 5s long clips without
overlapping and uniformly sample 32 frames from each clip. We adopt top-k pooling to
average scores of all clips as the video-level score.

4.2 Results of Streaming Model
Videos in the Something-Something dataset usually contain two to three objects including
humans. We keep the top 20 region proposals for each frame and fix the number of nodes in
the hidden graph to 5. We plot the top-1 accuracy in Fig. 3.

The accuracy of the baseline model is significantly lower than any of our graph modules,
indicating that feeding the average pooling over proposals into an LSTM fails to capture
interactions between objects. One possible explanation is that the average pooling operation
discards the spatial relations contained in proposals. The only temporal relation modeled by
LSTM is insufficient to capture interactions. On the contrary, as our graph module maintains
a graphical structure to keep both spatial and temporal relations among proposals, it has the
capability to model the complex interactions among objects.
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Model Someth. v1 Someth. v2

Ours Visual Location Visual Location
41.7 38.2 54.0 50.5

ECO Lite [33] 41.3 -

Table 1: Top-1 accuracy of the last feature map on
Someth. validation set. (“Visual” and “Location”
refer to “visual graph” and “location graph”.)

model mAP top-1 top-3
Backbone 70.2 69.2 83.5
Visual Graph 71.5 70.3 84.5
Location Graph 71.8 70.3 84.8

Table 2: Results of the static version
model on ActivityNet dataset. With
RGB frame inputs only.

Between the two graph modules, we notice that the visual graph outperforms the location
graph. That is possibly because the visual graph contains more parameters than the location
graph, which gives the visual graph more powerful modeling ability. Though the location
graph performs inferior than the visual graph, it still achieves more than 38.5% top-1 accu-
racy. It is reasonable to conclude that the graph module structure intrinsically has the ability
to model interactions regardless of any specific instantiation.

Figure 3: Top-1 accuracy on Something-
Something v1 validation set for each feature
map. “Avg” means the average accuracy of
the total eight feature maps.

The accuracy of the two graph modules
increases steadily as the number of frames
increases and plateaus at 7-th feature map.
It demonstrates that our graph module has
the ability to recognize actions in stream-
ing videos, even if only parts of frames are
forwarded into the module. We also report
the accuracy of the last feature map in Ta-
ble 1. On Something-Something v1 dataset,
our visual graph performs slightly better
than [33] which is a recent state-of-the-art
streaming method. Distinct from [33], our
model explicitly focuses on modeling ob-
ject interactions. The location graph does
not perform as competitive as the visual
graph. However, note that the location
graph has fewer parameters as illustrated in
Sec. 2.2.

4.3 Results of Static Model

Something-Something Dataset. We compare our static version model with some recent
works [16, 17, 22, 28, 32, 33] shown in Table 3. For Something-Something v1 validation set,
the backbone 3D ConvNet has achieved 46.0% in top-1 accuracy and 76.1% in top-5 accu-
racy. By adding our two types of dynamic graph modules to the backbone, the performance
improves an absolute 1.1%. For Something-Something v2 validation set, the backbone 3D
ConvNet has achieved 59.7% in top-1 and 86.4% in top-5 accuracy. Our graph module still
boosts the performance of the backbone by an absolute 1.7% for top-1 accuracy. We also
report our results on the leaderboard (results shown in the “test” column). Without bells and
whistles (e.g., flow inputs and ensembling), our model achieves competitive results.
ActivityNet Dataset. We also evaluate our static version model on ActivityNet dataset
and report the result in Table 2. Different from trimmed and shorter videos in Something-
Something dataset, videos in ActivityNet are untrimmed and longer, and some contain mul-
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Something v1 Something v2
val test val test

Modality top-1 top-5 top-1 top-1 top-5 top-1 top-5
2-Stream TRN [32] Flow+RGB 42.0 - 40.7 55.5 83.1 56.2 83.2
MFNet-C101 [16] RGB only 43.9 73.1 37.5 - - - -
Space-Time Graphs [28] RGB only 46.1 76.8 45.0 - - - -
ECOEnLite [33] RGB only 46.4 - 42.3 - - - -
ECOEnLite [33] Flow+RGB 49.5 - 43.9 - - - -
TSM16F [17] RGB only 44.8 74.5 - 58.7 84.8 59.9 85.9
LEGO [22] RGB only 45.9 - - 59.6 - - -
Backbone RGB only 46.0 76.1 - 59.7 86.4 - -
Visual Graph RGB only 47.1 76.2 - 61.4 86.8 - -
Location Graph RGB only 47.1 76.3 44.5 61.4 86.8 59.7 86.1

Table 3: Comparing performance of the static version model on Something-Something v1
& v2 datasets with state-of-the-art methods. The “test” columns are leaderboard results.
Note that we only use RGB modality and relatively simple preprocessing steps. The top two
scores of each metric are highlighted. (“-” means there is no publicly available evaluation
scores released by the authors.)

tiple actions. The backbone 3D ConvNet has achieved 69.2% top-1 accuracy and the mAP
is 70.2%1. Note that compared with the state-of-the-art performance [26, 31], we only apply
random rescale and random horizontal flip to RGB images without any other complicated
data augmentation. We also do not use audio modality, optical-flow features or ensembles,
etc. Both types of dynamic graph modules bring around 1.5% improvement in mAP com-
pared to the backbone. The result demonstrates our module’s capability on long-term action
recognition in untrimmed videos. As our model is trained on trimmed action instances level
by sampling a fixed number of frames but tested on whole videos, we can draw a conclu-
sion that our proposed graph module is capable of recognizing actions in both single-labeled
trimmed videos and multi-labeled untrimmed videos.

5 Related Works
Video action recognition with deep learning. Many works have applied convolutional
networks to tackle video action recognition problems [4, 12, 23, 24, 25, 26, 29]. Karpathy et
al. [12] explored various approaches of fusing RGB frames in temporal domain. Simonyan
et al. [23] devised a two-stream model to fuse RGB features and optical flow features. Tran et
al. [24] applied a 3D kernel to convolve a sequence of frames in spatiotemporal domain. [4]
proposed inflated 3D convolutional networks (I3D) which utilize parameters in 2D ConvNets
pre-trained on ImageNet [15]. [26] proposed the temporal segment network (TSN) which
sparsely sampled frames. Zhou et al. [32] showed that the order of frames is crucial for
correct recognition. Zolfaghari et al. [33] proposed an online video understanding system
combining 2D ConvNets and 3D ConvNets. ConvNets is also one of the components in our
model. However, ConvNets lack the power to model explicit object interactions, which is
the problem the proposed module aims to solve.
Relational model / Graph neural networks. Another line of work in action recognition
is focusing on modeling object relationships. Ma et al. [18] utilized an LSTM to model
object interactions but lost spatial information. Wang et al. [29] added a non-local layer

1The 3D backbone network is our own implementation.
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to 3D ConvNets to capture relations among different positions in feature maps. However,
two distant positions are generally likely to be irrelevant. Some works apply graph neural
network (GNN) to model object relations. [5] projected pixels to graph space and then
projected back to build relations among different regions, but it cannot guarantee each region
corresponds to (a part of) an object. The most similar work to ours is [28], where a video
is represented as a global space-time graph of object regions. We propose to use a dynamic
hidden graph to process sequential video input, in the form of object region proposals, which
takes advantage of both relational modeling and sequential modeling [6].

6 Conclusion
We propose a novel dynamic graph module with two instantiations, visual graph and location
graph, to model object-object interactions in video activities. By considering object relations
in spatial and temporal domains simultaneously, the proposed graph module can capture
interactions among objects explicitly in streaming video settings, which differs our work
from existing methods. We will extend our graph module to more sequential modeling fields,
e.g. video prediction, in the future.
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A Appendix
This Appendix provides additional algorithm formulas, network structures and implementa-
tion details.

A.1 Coordinates updating

At time step t > 1, suppose the top-left and bottom-right coordinates of the m-th node in
hidden graph are (mt−1

x,1 ,mt−1
y,1 ,mt−1

x,2 ,mt−1
y,2 ), and the coordinates of the n-th proposal in the

t-th feature map are (nt
x,1,n

t
y,1,n

t
x,2,n

t
y,2). The normalized weight (IoU) between the m-th

node in the hidden graph and the n-th proposal in the t-th feature map is FFF ′lll(bbb
t
n,xxxm). The

coordinate of mt
x,1 is computed as:

mt
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2 (m
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(12)

A.2 The Structure of Fusion Layers

The average-pooled feature produced by the 3D ConvNet is denoted as fff ∈RC×1 where C =
2048. The graph module feature qqqt ∈ RC′×1 where C′ = 1024. We fuse both graph module
feature and 3D ConvNet feature to recognize actions. The fusion layers are illustrated in
Fig. 4. We keep the size of the fused feature zzzt to C′× 1 and forward this feature into a
multi-layer perceptron to get the final recognition results.

Figure 4: Fusion layers to fuse the graph module feature and 3D ConvNet feature at time
step t.

A.3 Implementation Details

We first train our backbone 3D model [4, 29] on Kinetics dataset and then fine-tune it on
the target datasets. For Something-Something dataset, we randomly sample 32 frames from
each video. For ActivityNet dataset, as the video length is much longer, we first segment each
activity instance into several clips (around 5 seconds) with the overlap rate fixed to 20%. The
sampled frames are used to train our backbone 3D model. Following [28], sampled frames
are randomly scaled with shorter side resized to a random integer number in [256, 320].
Then we randomly crop out an area of 224× 224 and randomly flip frames horizontally
before forwarding them to the backbone model. The Dropout [? ] before the classification
layer in backbone model is set to 0.5. We train our backbone model with a batch size of
24. We set the initial learning rate to 0.00125. We apply stochastic gradient descent (SGD)
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optimizer and set momentum to 0.9 and weight decay to 0.0001. We adopt cross-entropy
loss during our training. We adopt cross-entropy loss during our training.

Next, we describe how we train our streaming dynamic graph module. For each input
frame, we propose RoI proposals using RPN [21] with ResNet-50 pre-trained on Microsoft
COCO. For Something-Something dataset, we keep the top 20 proposals each frame and
set the number of nodes in hidden graph to be 5. For ActivityNet dataset, as video scenes
are more complex and contain more objects, we keep the top 40 proposals and increase the
number of graph nodes to 10. We fix the backbone 3D ConvNet and only train our graph
module, fusion layers and classification layer. We adopt the same learning strategy as the
fine-tuning of the backbone.

For the static model, we first train the streaming model following the strategy above for
3 epochs as a warm-up. Then we concatenate the graph module feature with the backbone
feature using the fusion layers described in Sec. A.2. At the same time, we reduce the
learning rate by a factor of 10. The parameters of the backbone remain fixed during training.
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